2000 character limit reached
Growth of Weil-Petersson volumes and random hyperbolic surfaces of large genus
Published 10 Dec 2010 in math.GN | (1012.2167v1)
Abstract: In this paper we study the asymptotic behavior of Weil-Petersson volumes of moduli spaces of hyperbolic surfaces of genus $g$ as $g \rightarrow \infty.$ We apply these asymptotic estimates to study the geometric properties of random hyperbolic surfaces, such as the Cheeger constant and the length of the shortest simple closed geodesic of a given combinatorial type.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.