Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 36 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 66 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Breathing modes of long Josephson junctions with phase-shifts (1012.1511v1)

Published 7 Dec 2010 in nlin.PS and math.AP

Abstract: We consider a spatially inhomogeneous sine-Gordon equation with a time-periodic drive, modeling a microwave driven long Josephson junction with phase-shifts. Under appropriate conditions, Josephson junctions with phase-shifts can have a spatially nonuniform ground state. In recent reports, it is experimentally shown that a microwave drive can be used to measure the eigenfrequency of a junction's ground state. Such a microwave spectroscopy is based on the observation that when the frequency of the applied microwave is in the vicinity of the natural frequency of the ground state, the junction can switch to a resistive state, characterized by a non-zero junction voltage. It was conjectured that the process is analogous to the resonant phenomenon in a simple pendulum motion driven by a time periodic external force. In the case of long junctions with phase-shifts, it would be a resonance between the internal breathing mode of the ground state and the microwave field. Nonetheless, it was also reported that the microwave power needed to switch the junction into a resistive state depends on the magnitude of the eigenfrequency to be measured. Using multiple scale expansions, we show here that an infinitely long Josephson junction with phase-shifts cannot be switched to a resistive state by microwave field with frequency close to the system's eigenfrequency, provided that the applied microwave amplitude is small enough, which confirms the experimental observations. It is because higher harmonics with frequencies in the continuous spectrum are excited, in the form of continuous wave radiation. The presence of applied microwaves balances the nonlinear damping, creating a stable breather mode oscillation. We confirm our analytical results numerically.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube