Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fourth order curvature flows and geometric applications (1012.0342v1)

Published 1 Dec 2010 in math.DG

Abstract: We study a class of fourth order curvature flows on a compact Riemannian manifold, which includes the gradient flows of a number of quadratic geometric functionals, as for instance the L2 norm of the curvature. Such flows can develop a special kind of singularities, that could not appear in the Ricci flow, namely singularities where the manifold collapses with bounded curvature. We show that this phenomenon cannot occur if we assume a uniform positive lower bound on the Yamabe invariant. In particular, for a number of gradient flows in dimension four, such a lower bound exists if we assume a bound on the initial energy. This implies that these flows can only develop singularities where the curvature blows up, and that blowing-up sequences converge (up to a subsequence) to a "singularity model", namely a complete Bach-flat, scalar-flat manifold. We prove a rigidity result for those model manifolds and show that if the initial energy is smaller than an explicit bound, then no singularity can occur. Under those assumptions, the flow exists for all time, and converges up to a subsequence to the sphere or the real projective space. This gives an alternative proof, under a slightly stronger assumption, of a result from Chang, Gursky and Yang asserting that integral pinched 4-manifolds with positive Yamabe constant are space forms.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)