Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counting in Graph Covers: A Combinatorial Characterization of the Bethe Entropy Function (1012.0065v2)

Published 1 Dec 2010 in cs.IT, cond-mat.stat-mech, cs.AI, math.CO, and math.IT

Abstract: We present a combinatorial characterization of the Bethe entropy function of a factor graph, such a characterization being in contrast to the original, analytical, definition of this function. We achieve this combinatorial characterization by counting valid configurations in finite graph covers of the factor graph. Analogously, we give a combinatorial characterization of the Bethe partition function, whose original definition was also of an analytical nature. As we point out, our approach has similarities to the replica method, but also stark differences. The above findings are a natural backdrop for introducing a decoder for graph-based codes that we will call symbolwise graph-cover decoding, a decoder that extends our earlier work on blockwise graph-cover decoding. Both graph-cover decoders are theoretical tools that help towards a better understanding of message-passing iterative decoding, namely blockwise graph-cover decoding links max-product (min-sum) algorithm decoding with linear programming decoding, and symbolwise graph-cover decoding links sum-product algorithm decoding with Bethe free energy function minimization at temperature one. In contrast to the Gibbs entropy function, which is a concave function, the Bethe entropy function is in general not concave everywhere. In particular, we show that every code picked from an ensemble of regular low-density parity-check codes with minimum Hamming distance growing (with high probability) linearly with the block length has a Bethe entropy function that is convex in certain regions of its domain.

Citations (78)

Summary

We haven't generated a summary for this paper yet.