Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Bethe Permanent of a Non-Negative Matrix (1107.4196v3)

Published 21 Jul 2011 in cs.IT, cs.CC, math-ph, math.CO, math.IT, and math.MP

Abstract: It has recently been observed that the permanent of a non-negative square matrix, i.e., of a square matrix containing only non-negative real entries, can very well be approximated by solving a certain Bethe free energy function minimization problem with the help of the sum-product algorithm. We call the resulting approximation of the permanent the Bethe permanent. In this paper we give reasons why this approach to approximating the permanent works well. Namely, we show that the Bethe free energy function is convex and that the sum-product algorithm finds its minimum efficiently. We then discuss the fact that the permanent is lower bounded by the Bethe permanent, and we comment on potential upper bounds on the permanent based on the Bethe permanent. We also present a combinatorial characterization of the Bethe permanent in terms of permanents of so-called lifted versions of the matrix under consideration. Moreover, we comment on possibilities to modify the Bethe permanent so that it approximates the permanent even better, and we conclude the paper with some observations and conjectures about permanent-based pseudo-codewords and permanent-based kernels.

Citations (87)

Summary

We haven't generated a summary for this paper yet.