Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 32 tok/s Pro
2000 character limit reached

$2$-modified characteristic Fredholm determinants, Hill's method, and the periodic Evans function of Gardne (1011.5695v1)

Published 26 Nov 2010 in math.SP

Abstract: Using the relation established by Johnson--Zumbrun between Hill's method of aproximating spectra of periodic-coefficient ordinary differential operators and a generalized periodic Evans function given by the $2$-modified characteristic Fredholm determinant of an associated Birman--Schwinger system, together with a Volterra integral computation introduced by Gesztesy--Makarov, we give an explicit connection between the generalized Birman--Schwinger-type periodic Evans function and the standard Jost function-type periodic Evans function defined by Gardner in terms of the fundamental solution of the eigenvalue equation written as a first-order system. This extends to a large family of operators the results of Gesztesy--Makarov for scalar Schr\"odinger operators and of Gardner for vector-valued second-order elliptic operators, in particular recovering by independent argument the fundamental result of Gardner that the zeros of the Evans function agree in location and (algebraic) multiplicity with the periodic eigenvalues of the associated operator

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube