Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Pachner graph and the simplification of 3-sphere triangulations (1011.4169v2)

Published 18 Nov 2010 in math.GT, cs.CG, and math.CO

Abstract: It is important to have fast and effective methods for simplifying 3-manifold triangulations without losing any topological information. In theory this is difficult: we might need to make a triangulation super-exponentially more complex before we can make it smaller than its original size. Here we present experimental work suggesting that for 3-sphere triangulations the reality is far different: we never need to add more than two tetrahedra, and we never need more than a handful of local modifications. If true in general, these extremely surprising results would have significant implications for decision algorithms and the study of triangulations in 3-manifold topology. The algorithms behind these experiments are interesting in their own right. Key techniques include the isomorph-free generation of all 3-manifold triangulations of a given size, polynomial-time computable signatures that identify triangulations uniquely up to isomorphism, and parallel algorithms for studying finite level sets in the infinite Pachner graph.

Citations (36)

Summary

We haven't generated a summary for this paper yet.