Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On information plus noise kernel random matrices (1011.2660v1)

Published 11 Nov 2010 in math.ST and stat.TH

Abstract: Kernel random matrices have attracted a lot of interest in recent years, from both practical and theoretical standpoints. Most of the theoretical work so far has focused on the case were the data is sampled from a low-dimensional structure. Very recently, the first results concerning kernel random matrices with high-dimensional input data were obtained, in a setting where the data was sampled from a genuinely high-dimensional structure---similar to standard assumptions in random matrix theory. In this paper, we consider the case where the data is of the type "information${}+{}$noise." In other words, each observation is the sum of two independent elements: one sampled from a "low-dimensional" structure, the signal part of the data, the other being high-dimensional noise, normalized to not overwhelm but still affect the signal. We consider two types of noise, spherical and elliptical. In the spherical setting, we show that the spectral properties of kernel random matrices can be understood from a new kernel matrix, computed only from the signal part of the data, but using (in general) a slightly different kernel. The Gaussian kernel has some special properties in this setting. The elliptical setting, which is important from a robustness standpoint, is less prone to easy interpretation.

Summary

We haven't generated a summary for this paper yet.