Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the spectral property of kernel-based sensor fusion algorithms of high dimensional data (1909.11734v2)

Published 25 Sep 2019 in math.ST and stat.TH

Abstract: We apply local laws of random matrices and free probability theory to study the spectral properties of two kernel-based sensor fusion algorithms, nonparametric canonical correlation analysis (NCCA) and alternating diffusion (AD), for two simultaneously recorded high dimensional datasets under the null hypothesis. The matrix of interest is the product of the kernel matrices associated with the databsets, which may not be diagonalizable in general. We prove that in the regime where dimensions of both random vectors are comparable to the sample size, if NCCA and AD are conducted using a smooth kernel function, then the first few nontrivial eigenvalues will converge to real deterministic values provided the datasets are independent Gaussian random vectors. Toward the claimed result, we also provide a convergence rate of eigenvalues of a kernel affinity matrix.

Summary

We haven't generated a summary for this paper yet.