Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reading Dependencies from Covariance Graphs (1010.4504v3)

Published 21 Oct 2010 in stat.ML, cs.AI, math.ST, and stat.TH

Abstract: The covariance graph (aka bi-directed graph) of a probability distribution $p$ is the undirected graph $G$ where two nodes are adjacent iff their corresponding random variables are marginally dependent in $p$. In this paper, we present a graphical criterion for reading dependencies from $G$, under the assumption that $p$ satisfies the graphoid properties as well as weak transitivity and composition. We prove that the graphical criterion is sound and complete in certain sense. We argue that our assumptions are not too restrictive. For instance, all the regular Gaussian probability distributions satisfy them.

Citations (8)

Summary

We haven't generated a summary for this paper yet.