Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Algorithm for Maximum Likelihood Estimation in Gaussian Graphical Models for Marginal Independence (1212.2462v1)

Published 19 Oct 2012 in stat.ME, cs.LG, and stat.ML

Abstract: Graphical models with bi-directed edges (<->) represent marginal independence: the absence of an edge between two vertices indicates that the corresponding variables are marginally independent. In this paper, we consider maximum likelihood estimation in the case of continuous variables with a Gaussian joint distribution, sometimes termed a covariance graph model. We present a new fitting algorithm which exploits standard regression techniques and establish its convergence properties. Moreover, we contrast our procedure to existing estimation methods.

Citations (33)

Summary

We haven't generated a summary for this paper yet.