Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Classifying quantum phases using Matrix Product States and PEPS (1010.3732v3)

Published 18 Oct 2010 in cond-mat.str-el and quant-ph

Abstract: We give a classification of gapped quantum phases of one-dimensional systems in the framework of Matrix Product States (MPS) and their associated parent Hamiltonians, for systems with unique as well as degenerate ground states, and both in the absence and presence of symmetries. We find that without symmetries, all systems are in the same phase, up to accidental ground state degeneracies. If symmetries are imposed, phases without symmetry breaking (i.e., with unique ground states) are classified by the cohomology classes of the symmetry group, this is, the equivalence classes of its projective representations, a result first derived in [X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 83, 035107 (2011); arXiv:1008.3745]. For phases with symmetry breaking (i.e., degenerate ground states), we find that the symmetry consists of two parts, one of which acts by permuting the ground states, while the other acts on individual ground states, and phases are labelled by both the permutation action of the former and the cohomology class of the latter. Using Projected Entangled Pair States (PEPS), we subsequently extend our framework to the classification of two-dimensional phases in the neighborhood of a number of important cases, in particular systems with unique ground states, degenerate ground states with a local order parameter, and topological order. We also show that in two dimensions, imposing symmetries does not constrain the phase diagram in the same way it does in one dimension. As a central tool, we introduce the isometric form, a normal form for MPS and PEPS which is a renormalization fixed point. Transforming a state to its isometric form does not change the phase, and thus, we can focus on to the classification of isometric forms.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.