Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Geometrical Versions of improved Berezin-Li-Yau Inequalities (1010.2683v1)

Published 13 Oct 2010 in math.SP, math-ph, and math.MP

Abstract: We study the eigenvalues of the Dirichlet Laplace operator on an arbitrary bounded, open set in $\Rd$, $d \geq 2$. In particular, we derive upper bounds on Riesz means of order $\sigma \geq 3/2$, that improve the sharp Berezin inequality by a negative second term. This remainder term depends on geometric properties of the boundary of the set and reflects the correct order of growth in the semi-classical limit. Under certain geometric conditions these results imply new lower bounds on individual eigenvalues, which improve the Li-Yau inequality.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.