Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Estimates of sections of determinant line bundles on Moduli spaces of pure sheaves on algebraic surfaces (1010.1815v1)

Published 9 Oct 2010 in math.AG

Abstract: Let $X$ be any smooth simply connected projective surface. We consider some moduli space of pure sheaves of dimension one on $X$, i.e. $\mhu$ with $u=(0,L,\chi(u)=0)$ and $L$ an effective line bundle on $X$, together with a series of determinant line bundles associated to $r[\mo_X]-n[\mo_{pt}]$ in Grothendieck group of $X$. Let $g_L$ denote the arithmetic genus of curves in the linear system $\ls$. For $g_L\leq2$, we give a upper bound of the dimensions of sections of these line bundles by restricting them to a generic projective line in $\ls$. Our result gives, together with G\"ottsche's computation, a first step of a check for the strange duality for some cases for $X$ a rational surface.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube