Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new series for $π^3$ and related congruences (1009.5375v8)

Published 27 Sep 2010 in math.NT and math.CO

Abstract: Let $H_n{(2)}$ denote the second-order harmonic number $\sum_{0<k\le n}1/k^2$ for $n=0,1,2,\ldots$. In this paper we obtain the following identity: $$\sum_{k=1}^\infty\frac{2^kH_{k-1}^{(2)}}{k\binom{2k}k}=\frac{\pi^3}{48}.$$ We explain how we found the series and develop related congruences involving Bernoulli or Euler numbers; for example, it is shown that $$\sum_{k=1}^{p-1}\frac{\binom{2k}k}{2^k}H_k^{(2)}\equiv-E_{p-3}\pmod{p}$$ for any prime $p\>3$, where $E_0,E_1,E_2,\ldots$ are Euler numbers. Motivated by the Amdeberhan-Zeilberger identity $\sum_{k=1}\infty(21k-8)/(k3\binom{2k}k3)=\pi2/6$, we also establish the congruence $$\sum_{k=1}{(p-1)/2}\frac{21k-8}{k3\binom{2k}k3}\equiv(-1){(p+1)/2}4E_{p-3}\pmod p$$ for each prime $p>3$.

Summary

We haven't generated a summary for this paper yet.