2000 character limit reached
p-adic congruences motivated by series (1111.4988v4)
Published 21 Nov 2011 in math.NT and math.CO
Abstract: Let $p>5$ be a prime. Motivated by the known formulae $\sum_{k=1}\infty(-1)k/(k3\binom{2k}{k})=-2\zeta(3)/5$ and $\sum_{k=0}\infty \binom{2k}{k}2/((2k+1)16k)=4G/\pi$$ (where $G=\sum_{k=0}\infty(-1)k/(2k+1)2$ is the Catalan constant), we show that $$\sum_{k=1}{(p-1)/2}\frac{(-1)k}{k3\binom{2k}{k}}\equiv-2B_{p-3}\pmod{p},$$ $$\sum_{k=(p+1)/2}{p-1}\frac{\binom{2k}{k}2}{(2k+1)16k}\equiv-\frac 7{4}p2B_{p-3}\pmod{p3}$$, and $$\sum_{k=0}{(p-3)/2}\frac{\binom{2k}{k}2}{(2k+1)16k} \equiv-2q_p(2)-pq_p(2)2+\frac{5}{12}p2B_{p-3}\pmod{p3},$$ where $B_0,B_1,\ldots$ are Bernoulli numbers and $q_p(2)$ is the Fermat quotient $(2{p-1}-1)/p$.