Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

On saturated fusion systems and Brauer indecomposability of Scott modules (1009.2391v1)

Published 13 Sep 2010 in math.RT, math.AT, and math.GR

Abstract: Let $p$ be a prime number, $G$ a finite group, $P$ a $p$-subgroup of $G$ and $k$ an algebraically closed field of characteristic $p$. We study the relationship between the category $\Ff_P(G)$ and the behavior of $p$-permutation $kG$-modules with vertex $P$ under the Brauer construction. We give a sufficient condition for $\Ff_P(G)$ to be a saturated fusion system. We prove that for Scott modules with abelian vertex, our condition is also necessary. In order to obtain our results, we prove a criterion for the categories arising from the data of $(b, G)$-Brauer pairs in the sense of Alperin-Brou\'e and Brou\'e-Puig to be saturated fusion systems on the underlying $p$-group.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube