Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 92 tok/s
GPT OSS 120B 452 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Gaussian Process Bandits for Tree Search: Theory and Application to Planning in Discounted MDPs (1009.0605v2)

Published 3 Sep 2010 in cs.LG and cs.AI

Abstract: We motivate and analyse a new Tree Search algorithm, GPTS, based on recent theoretical advances in the use of Gaussian Processes for Bandit problems. We consider tree paths as arms and we assume the target/reward function is drawn from a GP distribution. The posterior mean and variance, after observing data, are used to define confidence intervals for the function values, and we sequentially play arms with highest upper confidence bounds. We give an efficient implementation of GPTS and we adapt previous regret bounds by determining the decay rate of the eigenvalues of the kernel matrix on the whole set of tree paths. We consider two kernels in the feature space of binary vectors indexed by the nodes of the tree: linear and Gaussian. The regret grows in square root of the number of iterations T, up to a logarithmic factor, with a constant that improves with bigger Gaussian kernel widths. We focus on practical values of T, smaller than the number of arms. Finally, we apply GPTS to Open Loop Planning in discounted Markov Decision Processes by modelling the reward as a discounted sum of independent Gaussian Processes. We report similar regret bounds to those of the OLOP algorithm.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube