Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Smoothing Stochastic Gradient Method for Composite Optimization (1008.5204v2)

Published 31 Aug 2010 in math.OC and cs.LG

Abstract: We consider the unconstrained optimization problem whose objective function is composed of a smooth and a non-smooth conponents where the smooth component is the expectation a random function. This type of problem arises in some interesting applications in machine learning. We propose a stochastic gradient descent algorithm for this class of optimization problem. When the non-smooth component has a particular structure, we propose another stochastic gradient descent algorithm by incorporating a smoothing method into our first algorithm. The proofs of the convergence rates of these two algorithms are given and we show the numerical performance of our algorithm by applying them to regularized linear regression problems with different sets of synthetic data.

Citations (15)

Summary

We haven't generated a summary for this paper yet.