Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient Sliding for Composite Optimization (1406.0919v2)

Published 4 Jun 2014 in math.OC, cs.CC, and stat.ML

Abstract: We consider in this paper a class of composite optimization problems whose objective function is given by the summation of a general smooth and nonsmooth component, together with a relatively simple nonsmooth term. We present a new class of first-order methods, namely the gradient sliding algorithms, which can skip the computation of the gradient for the smooth component from time to time. As a consequence, these algorithms require only ${\cal O}(1/\sqrt{\epsilon})$ gradient evaluations for the smooth component in order to find an $\epsilon$-solution for the composite problem, while still maintaining the optimal ${\cal O}(1/\epsilon2)$ bound on the total number of subgradient evaluations for the nonsmooth component. We then present a stochastic counterpart for these algorithms and establish similar complexity bounds for solving an important class of stochastic composite optimization problems. Moreover, if the smooth component in the composite function is strongly convex, the developed gradient sliding algorithms can significantly reduce the number of graduate and subgradient evaluations for the smooth and nonsmooth component to ${\cal O} (\log (1/\epsilon))$ and ${\cal O}(1/\epsilon)$, respectively. Finally, we generalize these algorithms to the case when the smooth component is replaced by a nonsmooth one possessing a certain bi-linear saddle point structure.

Citations (66)

Summary

We haven't generated a summary for this paper yet.