Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Strict inequalities of critical values in continuum percolation (1007.3322v1)

Published 20 Jul 2010 in math.PR

Abstract: We consider the supercritical finite-range random connection model where the points $x,y$ of a homogeneous planar Poisson process are connected with probability $f(|y-x|)$ for a given $f$. Performing percolation on the resulting graph, we show that the critical probabilities for site and bond percolation satisfy the strict inequality $p_c{\rm site} > p_c{\rm bond}$. We also show that reducing the connection function $f$ strictly increases the critical Poisson intensity. Finally, we deduce that performing a spreading transformation on $f$ (thereby allowing connections over greater distances but with lower probabilities, leaving average degrees unchanged) {\em strictly} reduces the critical Poisson intensity. This is of practical relevance, indicating that in many real networks it is in principle possible to exploit the presence of spread-out, long range connections, to achieve connectivity at a strictly lower density value.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.