Papers
Topics
Authors
Recent
2000 character limit reached

Green functions of the spectral ball and symmetrized polydisk

Published 19 Jul 2010 in math.CV and math.FA | (1007.3162v1)

Abstract: The Green function of the spectral ball is constant over the isospectral varieties, is never less than the pullback of its counterpart on the symmetrized polydisk, and is equal to it in the generic case where the pole is a cyclic (non-derogatory) matrix. When the pole is derogatory, the inequality is always strict, and the difference between the two functions depends on the order of nilpotence of the strictly upper triangular blocks that appear in the Jordan decomposition of the pole. In particular, the Green function of the spectral ball is not symmetric in its arguments. Additionally, some estimates are given for invariant functions in the symmetrized polydisc, e.g. (infinitesimal versions of) the Carath\'eodory distance and the Green function, that show that they are distinct in dimension greater or equal to $3$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.