Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 175 tok/s Pro
2000 character limit reached

An algebraic Haag's theorem (1006.4726v1)

Published 24 Jun 2010 in math-ph and math.MP

Abstract: Under natural conditions (such as split property and geometric modular action of wedge algebras) it is shown that the unitary equivalence class of the net of local (von Neumann) algebras in the vacuum sector associated to double cones with bases on a fixed space-like hyperplane completely determines an algebraic QFT model. More precisely, if for two models there is unitary connecting all of these algebras, then --- without assuming that this unitary also connects their respective vacuum states or spacetime symmetry representations --- it follows that the two models are equivalent. This result might be viewed as an algebraic version of the celebrated theorem of Rudolf Haag about problems regarding the so-called "interaction-picture" in QFT. Original motivation of the author for finding such an algebraic version came from conformal chiral QFT. Both the chiral case as well as a related conjecture about standard half-sided modular inclusions will be also discussed.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube