Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

A Tauberian Theorem for $\ell$-adic Sheaves on $\mathbb A^1$ (1006.0789v1)

Published 4 Jun 2010 in math.AG and math.NT

Abstract: Let $K\in L1(\mathbb R)$ and let $f\in L\infty(\mathbb R)$ be two functions on $\mathbb R$. The convolution $$(K\ast f)(x)=\int_{\mathbb R}K(x-y)f(y)dy$$ can be considered as an average of $f$ with weight defined by $K$. Wiener's Tauberian theorem says that under suitable conditions, if $$\lim_{x\to \infty}(K\ast f)(x)=\lim_{x\to \infty} (K\ast A)(x)$$ for some constant $A$, then $$\lim_{x\to \infty}f(x)=A.$$ We prove the following $\ell$-adic analogue of this theorem: Suppose $K,F, G$ are perverse $\ell$-adic sheaves on the affine line $\mathbb A$ over an algebraically closed field of characteristic $p$ ($p\not=\ell$). Under suitable conditions, if $$(K\ast F)|{\eta\infty}\cong (K\ast G)|{\eta\infty},$$ then $$F|{\eta\infty}\cong G|{\eta\infty},$$ where $\eta_\infty$ is the spectrum of the local field of $\mathbb A$ at $\infty$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)