Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A general method for debiasing a Monte Carlo estimator (1005.2228v2)

Published 12 May 2010 in q-fin.CP, cs.NA, and stat.CO

Abstract: Consider a process, stochastic or deterministic, obtained by using a numerical integration scheme, or from Monte-Carlo methods involving an approximation to an integral, or a Newton-Raphson iteration to approximate the root of an equation. We will assume that we can sample from the distribution of the process from time 0 to finite time n. We propose a scheme for unbiased estimation of the limiting value of the process, together with estimates of standard error and apply this to examples including numerical integrals, root-finding and option pricing in a Heston Stochastic Volatility model. This results in unbiased estimators in place of biased ones i nmany potential applications.

Citations (111)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube