Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Risk measuring under model uncertainty (1004.5524v2)

Published 30 Apr 2010 in q-fin.RM and math.PR

Abstract: The framework of this paper is that of risk measuring under uncertainty, which is when no reference probability measure is given. To every regular convex risk measure on ${\cal C}_b(\Omega)$, we associate a unique equivalence class of probability measures on Borel sets, characterizing the riskless non positive elements of ${\cal C}_b(\Omega)$. We prove that the convex risk measure has a dual representation with a countable set of probability measures absolutely continuous with respect to a certain probability measure in this class. To get these results we study the topological properties of the dual of the Banach space $L1(c)$ associated to a capacity $c$. As application we obtain that every $G$-expectation $\E$ has a representation with a countable set of probability measures absolutely continuous with respect to a probability measure $P$ such that $P(|f|)=0$ iff $\E(|f|)=0$. We also apply our results to the case of uncertain volatility.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.