Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Products and sums divisible by central binomial coefficients (1004.4623v4)

Published 26 Apr 2010 in math.NT and math.CO

Abstract: In this paper we initiate the study of products and sums divisible by central binomial coefficients. We show that 2(2n+1)binom(2n,n)| binom(6n,3n)binom(3n,n) for every n=1,2,3,... Also, for any nonnegative integers $k$ and $n$ we have $$\binom {2k}k | \binom{4n+2k+2}{2n+k+1}\binom{2n+k+1}{2k}\binom{2n-k+1}n$$ and $$\binom{2k}k | (2n+1)\binom{2n}nC_{n+k}\binom{n+k+1}{2k},$$ where $C_m$ denotes the Catalan number $\binom{2m}m/(m+1)=\binom{2m}m-\binom{2m}{m+1}$. Applying this result we obtain two sums divisible by central binomial coefficients.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.