Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Singular vectors under random perturbation (1004.2000v1)

Published 12 Apr 2010 in math.NA, math.CO, math.PR, math.ST, and stat.TH

Abstract: Computing the first few singular vectors of a large matrix is a problem that frequently comes up in statistics and numerical analysis. Given the presence of noise, exact calculation is hard to achieve, and the following problem is of importance: \vskip2mm \centerline {\it How much a small perturbation to the matrix changes the singular vectors ?} \vskip2mm Answering this question, classical theorems, such as those of Davis-Kahan and Wedin, give tight estimates for the worst-case scenario. In this paper, we show that if the perturbation (noise) is random and our matrix has low rank, then better estimates can be obtained. Our method relies on high dimensional geometry and is different from those used an earlier papers.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)