Cartan-Weyl 3-algebras and the BLG Theory II: Strong-Semisimplicity and Generalized Cartan-Weyl 3-algebras (1004.1513v2)
Abstract: One of the most important questions in the Bagger-Lambert-Gustavsson (BLG) theory of multiple M2-branes is the choice of the Lie 3-algebra. The Lie 3-algebra should be chosen such that the corresponding BLG model is unitary and admits fuzzy 3-sphere as a solution. In this paper we propose another new condition: the Lie 3-algebras of use must be connected to the semisimple Lie algebras describing the gauge symmetry of D-branes via a certain reduction condition. We show that this reduction condition leads to a natural generalization of the Cartan-Weyl 3-algebras introduced in arXiv:1004.1397. Similar to a Cartan-Weyl 3-algebra, a generalized Cartan-Weyl 3-algebra processes a set of step generators characterized by non-degenerate roots. However, its Cartan subalgebra is non-abelian in general. We give reasons why having a non-abelian Cartan subalgebra may be just right to allow for fuzzy 3-sphere solution in the corresponding BLG models. We propose that generalized Cartan-Weyl 3-algebras is the right class of metric Lie 3-algebras to be used in the BLG theory.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.