Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dyer-Lashof operations on Tate cohomology of finite groups (1003.5595v1)

Published 29 Mar 2010 in math.AT and math.GR

Abstract: Let k be the field with p>0 elements, and let G be a finite group. By exhibiting an E-infinity-operad action on Hom(P,k) for a complete projective resolution P of the trivial kG-module k, we obtain power operations of Dyer-Lashof type on Tate cohomology H*(G; k). Our operations agree with the usual Steenrod operations on ordinary cohomology. We show that they are compatible (in a suitable sense) with products of groups, and (in certain cases) with the Evens norm map. These theorems provide tools for explicit computations of the operations for small groups G. We also show that the operations in negative degree are non-trivial. As an application, we prove that at the prime 2 these operations can be used to determine whether a Tate cohomology class is productive (in the sense of Carlson) or not.

Citations (5)

Summary

We haven't generated a summary for this paper yet.