Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Power operations and coactions in highly commutative homology theories (1309.2323v7)

Published 9 Sep 2013 in math.AT

Abstract: Power operations in the homology of infinite loop spaces, and $H_\infty$ or $E_\infty$ ring spectra have a long history in Algebraic Topology. In the case of ordinary mod p homology for a prime p, the power operations of Kudo, Araki, Dyer and Lashof interact with Steenrod operations via the Nishida relations, but for many purposes this leads to complicated calculations once iterated applications of these functions are required.On the other hand, the homology coaction turns out to provide tractable formulae better suited to exploiting multiplicative structure. We show how to derive suitable formulae for the interaction between power operations and homology coactions in a wide class of examples; our approach makes crucial use of modern frameworks for spectra with well behaved smash products. In the case of mod $p$ homology, our formulae extend those of Bisson and Joyal to odd primes. We also show how to exploit our results in sample calculations, and produce some apparently new formulae for the Dyer-Lashof action on the dual Steenrod algebra.

Citations (18)

Summary

We haven't generated a summary for this paper yet.