Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Steepest descent curves of convex functions on surfaces of constant curvature (1003.5386v3)

Published 28 Mar 2010 in math.CA and math.DG

Abstract: Let S be a complete surface of constant curvature K = + 1 or -1, i.e. the sphere S2 or the Lobachevskij plane L2, and D a bounded convex subset of S. If S = S2, assume also diameter (D) < pi/2. It is proved that the length of any steepest descent curve of a quasi-convex function in D is less than or equal to the perimeter of D. This upper bound is actually proved for the class of G-curves, a family of curves that naturally includes all steepest descent curves. In case S = S2, it is also proved the existence of G-curves, whose length is equal to the perimeter of their convex hull, showing that the above estimate is indeed optimal. The results generalize theorems by Manselli and Pucci on steepest descent curves in the Euclidean plane.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.