Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Krein-like extensions and the lower boundedness problem for elliptic operators (1002.4549v3)

Published 24 Feb 2010 in math.AP and math.SP

Abstract: For selfadjoint extensions tilde-A of a symmetric densely defined positive operator A_min, the lower boundedness problem is the question of whether tilde-A is lower bounded {\it if and only if} an associated operator T in abstract boundary spaces is lower bounded. It holds when the Friedrichs extension A_gamma has compact inverse (Grubb 1974, also Gorbachuk-Mikhailets 1976); this applies to elliptic operators A on bounded domains. For exterior domains, A_gamma {-1} is not compact, and whereas the lower bounds satisfy m(T)\ge m(tilde-A), the implication of lower boundedness from T to tilde-A has only been known when m(T)>-m(A_gamma). We now show it for general T. The operator A_a corresponding to T=aI, generalizing the Krein-von Neumann extension A_0, appears here; its possible lower boundedness for all real a is decisive. We study this Krein-like extension, showing for bounded domains that the discrete eigenvalues satisfy N_+(t;A_a)=c_At{n/2m}+O(t{(n-1+varepsilon)/2m}) for t\to\infty .

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.