Further restrictions on the topology of stationary black holes in five dimensions (1002.0490v1)
Abstract: We place further restriction on the possible topology of stationary asymptotically flat vacuum black holes in 5 spacetime dimensions. We prove that the horizon manifold can be either a connected sum of Lens spaces and "handles" $S1 \times S2$, or the quotient of $S3$ by certain finite groups of isometries (with no "handles"). The resulting horizon topologies include Prism manifolds and quotients of the Poincare homology sphere. We also show that the topology of the domain of outer communication is a cartesian product of the time direction with a finite connected sum of $\mathbb R4,S2 \times S2$'s and $CP2$'s, minus the black hole itself. We do not assume the existence of any Killing vector beside the asymptotically timelike one required by definition for stationarity.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.