Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Probabilistic Approach to Neural Networks Computation Based on Quantum Probability Model Probabilistic Principal Subspace Analysis Example (1001.4301v1)

Published 25 Jan 2010 in cs.NE and cs.LG

Abstract: In this paper, we introduce elements of probabilistic model that is suitable for modeling of learning algorithms in biologically plausible artificial neural networks framework. Model is based on two of the main concepts in quantum physics - a density matrix and the Born rule. As an example, we will show that proposed probabilistic interpretation is suitable for modeling of on-line learning algorithms for PSA, which are preferably realized by a parallel hardware based on very simple computational units. Proposed concept (model) can be used in the context of improving algorithm convergence speed, learning factor choice, or input signal scale robustness. We are going to see how the Born rule and the Hebbian learning rule are connected

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)