Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 21 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 469 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Effect of extreme data loss on long-range correlated and anti-correlated signals quantified by detrended fluctuation analysis (1001.3641v2)

Published 20 Jan 2010 in physics.data-an and cond-mat.stat-mech

Abstract: We investigate how extreme loss of data affects the scaling behavior of long-range power-law correlated and anti-correlated signals applying the DFA method. We introduce a segmentation approach to generate surrogate signals by randomly removing data segments from stationary signals with different types of correlations. These surrogate signals are characterized by: (i) the DFA scaling exponent $\alpha$ of the original correlated signal, (ii) the percentage $p$ of the data removed, (iii) the average length $\mu$ of the removed (or remaining) data segments, and (iv) the functional form of the distribution of the length of the removed (or remaining) data segments. We find that the {\it global} scaling exponent of positively correlated signals remains practically unchanged even for extreme data loss of up to 90%. In contrast, the global scaling of anti-correlated signals changes to uncorrelated behavior even when a very small fraction of the data is lost. These observations are confirmed on the examples of human gait and commodity price fluctuations. We systematically study the {\it local} scaling behavior of signals with missing data to reveal deviations across scales. We find that for anti-correlated signals even 10% of data loss leads to deviations in the local scaling at large scales from the original anti-correlated towards uncorrelated behavior. In contrast, positively correlated signals show no observable changes in the local scaling for up to 65% of data loss, while for larger percentage, the local scaling shows overestimated regions (with higher local exponent) at small scales, followed by underestimated regions (with lower local exponent) at large scales. Finally, we investigate how the scaling is affected by the statistics of the remaining data segments in comparison to the removed segments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.