Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Context and Keyword Extraction in Plain Text Using a Graph Representation (0912.1421v1)

Published 8 Dec 2009 in cs.IR

Abstract: Document indexation is an essential task achieved by archivists or automatic indexing tools. To retrieve relevant documents to a query, keywords describing this document have to be carefully chosen. Archivists have to find out the right topic of a document before starting to extract the keywords. For an archivist indexing specialized documents, experience plays an important role. But indexing documents on different topics is much harder. This article proposes an innovative method for an indexing support system. This system takes as input an ontology and a plain text document and provides as output contextualized keywords of the document. The method has been evaluated by exploiting Wikipedia's category links as a termino-ontological resources.

Summary

We haven't generated a summary for this paper yet.