Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging web resources for keyword assignment to short text documents (1706.05985v1)

Published 19 Jun 2017 in cs.IR and cs.DL

Abstract: Assigning relevant keywords to documents is very important for efficient retrieval, clustering and management of the documents. Especially with the web corpus deluged with digital documents, automation of this task is of prime importance. Keyword assignment is a broad topic of research which refers to tagging of document with keywords, key-phrases or topics. For text documents, the keyword assignment techniques have been developed under two sub-topics: automatic keyword extraction (AKE) and automatic key-phrase abstraction. However, the approaches developed in the literature for full text documents cannot be used to assign keywords to low text content documents like twitter feeds, news clips, product reviews or even short scholarly text. In this work, we point out several practical challenges encountered in tagging such low text content documents. As a solution to these challenges, we show that the proposed approaches which leverage knowledge from several open source web resources enhance the quality of the tags (keywords) assigned to the low text content documents. The performance of the proposed approach is tested on real world corpus consisting of scholarly documents with text content ranging from only the text in the title of the document (5-10 words) to the summary text/abstract (100- 150 words). We find that the proposed approach not just improves the accuracy of keyword assignment but offer a computationally efficient solution which can be used in real world applications.

Citations (3)

Summary

We haven't generated a summary for this paper yet.