Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s
GPT-5 High 12 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network (0911.3820v2)

Published 19 Nov 2009 in astro-ph.CO, astro-ph.IM, gr-qc, and physics.data-an

Abstract: The present operation of the ground-based network of gravitational-wave laser interferometers in "enhanced" configuration brings the search for gravitational waves into a regime where detection is highly plausible. The development of techniques that allow us to discriminate a signal of astrophysical origin from instrumental artefacts in the interferometer data and to extract the full range of information are some of the primary goals of the current work. Here we report the details of a Bayesian approach to the problem of inference for gravitational wave observations using a network of instruments, for the computation of the Bayes factor between two hypotheses and the evaluation of the marginalised posterior density functions of the unknown model parameters. The numerical algorithm to tackle the notoriously difficult problem of the evaluation of large multi-dimensional integrals is based on a technique known as Nested Sampling, which provides an attractive alternative to more traditional Markov-chain Monte Carlo (MCMC) methods. We discuss the details of the implementation of this algorithm and its performance against a Gaussian model of the background noise, considering the specific case of the signal produced by the in-spiral of binary systems of black holes and/or neutron stars, although the method is completely general and can be applied to other classes of sources. We also demonstrate the utility of this approach by introducing a new coherence test to distinguish between the presence of a coherent signal of astrophysical origin in the data of multiple instruments and the presence of incoherent accidental artefacts, and the effects on the estimation of the source parameters as a function of the number of instruments in the network.

Citations (159)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.