Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Isometries and Construction of Permutation Arrays (0911.1713v1)

Published 9 Nov 2009 in math.CO, cs.IT, and math.IT

Abstract: An (n,d)-permutation code is a subset C of Sym(n) such that the Hamming distance d_H between any two distinct elements of C is at least equal to d. In this paper, we use the characterisation of the isometry group of the metric space (Sym(n),d_H) in order to develop generating algorithms with rejection of isomorphic objects. To classify the (n,d)-permutation codes up to isometry, we construct invariants and study their efficiency. We give the numbers of non-isometric (4,3)- and (5,4)- permutation codes. Maximal and balanced (n,d)-permutation codes are enumerated in a constructive way.

Citations (6)

Summary

We haven't generated a summary for this paper yet.