Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New Lower Bounds on Sizes of Permutation Arrays (0801.3986v1)

Published 25 Jan 2008 in cs.IT and math.IT

Abstract: A permutation array(or code) of length $n$ and distance $d$, denoted by $(n,d)$ PA, is a set of permutations $C$ from some fixed set of $n$ elements such that the Hamming distance between distinct members $\mathbf{x},\mathbf{y}\in C$ is at least $d$. Let $P(n,d)$ denote the maximum size of an $(n,d)$ PA. This correspondence focuses on the lower bound on $P(n,d)$. First we give three improvements over the Gilbert-Varshamov lower bounds on $P(n,d)$ by applying the graph theorem framework presented by Jiang and Vardy. Next we show another two new improved bounds by considering the covered balls intersections. Finally some new lower bounds for certain values of $n$ and $d$ are given.

Citations (4)

Summary

We haven't generated a summary for this paper yet.