Deformed Maxwell Algebras and their Realizations (0910.0326v1)
Abstract: We study all possible deformations of the Maxwell algebra. In D=d+1\neq 3 dimensions there is only one-parameter deformation. The deformed algebra is isomorphic to so(d+1,1)\oplus so(d,1) or to so(d,2)\oplus so(d,1) depending on the signs of the deformation parameter. We construct in the dS (AdS) space a model of massive particle interacting with Abelian vector field via non-local Lorentz force. In D=2+1 the deformations depend on two parameters b and k. We construct a phase diagram, with two parts of the (b,k) plane with so(3,1)\oplus so(2,1) and so(2,2)\oplus so(2,1) algebras separated by a critical curve along which the algebra is isomorphic to Iso(2,1)\oplus so(2,1). We introduce in D=2+1 the Volkov-Akulov type model for a Abelian Goldstone-Nambu vector field described by a non-linear action containing as its bilinear term the free Chern-Simons Lagrangean.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.