Vacuum non-expanding horizons and shear-free null geodesic congruences (0908.0751v1)
Abstract: We investigate the geometry of a particular class of null surfaces in space-time called vacuum Non-Expanding Horizons (NEHs). Using the spin-coefficient equation, we provide a complete description of the horizon geometry, as well as fixing a canonical choice of null tetrad and coordinates on a NEH. By looking for particular classes of null geodesic congruences which live exterior to NEHs but have the special property that their shear vanishes at the intersection with the horizon, a good cut formalism for NEHs is developed which closely mirrors asymptotic theory. In particular, we show that such null geodesic congruences are generated by arbitrary choice of a complex world-line in a complex four dimensional space, each such choice induces a CR structure on the horizon, and a particular world-line (and hence CR structure) may be chosen by transforming to a privileged tetrad frame.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.