Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed and Adaptive Algorithms for Vehicle Routing in a Stochastic and Dynamic Environment (0903.3624v1)

Published 20 Mar 2009 in cs.RO

Abstract: In this paper we present distributed and adaptive algorithms for motion coordination of a group of m autonomous vehicles. The vehicles operate in a convex environment with bounded velocity and must service demands whose time of arrival, location and on-site service are stochastic; the objective is to minimize the expected system time (wait plus service) of the demands. The general problem is known as the m-vehicle Dynamic Traveling Repairman Problem (m-DTRP). The best previously known control algorithms rely on centralized a-priori task assignment and are not robust against changes in the environment, e.g. changes in load conditions; therefore, they are of limited applicability in scenarios involving ad-hoc networks of autonomous vehicles operating in a time-varying environment. First, we present a new class of policies for the 1-DTRP problem that: (i) are provably optimal both in light- and heavy-load condition, and (ii) are adaptive, in particular, they are robust against changes in load conditions. Second, we show that partitioning policies, whereby the environment is partitioned among the vehicles and each vehicle follows a certain set of rules in its own region, are optimal in heavy-load conditions. Finally, by combining the new class of algorithms for the 1-DTRP with suitable partitioning policies, we design distributed algorithms for the m-DTRP problem that (i) are spatially distributed, scalable to large networks, and adaptive to network changes, (ii) are within a constant-factor of optimal in heavy-load conditions and stabilize the system in any load condition. Simulation results are presented and discussed.

Citations (122)

Summary

We haven't generated a summary for this paper yet.