Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Discrete-time Dynamical Model for Optimal Dispatching and Rebalancing of Autonomous Mobility-on-Demand Systems (2402.01985v1)

Published 3 Feb 2024 in eess.SY and cs.SY

Abstract: Autonomous vehicles are rapidly evolving and will soon enable the application of large-scale mobility-on-demand (MoD) systems. Managing the fleets of available vehicles, commonly known as "rebalancing," is crucial to ensure that vehicles are distributed properly to meet customer demands. This paper presents an optimal control approach to optimize vehicle scheduling and rebalancing in an autonomous mobility-on-demand (AMoD) system. We use graph theory to model a city partitioned into virtual zones. Zones represent small areas of the city where vehicles can stop and pick up/drop off customers, whereas links denote corridors of the city along which autonomous vehicles can move. They are considered vertices and edges in the graph. Vehicles employed in the AMoD scheme are autonomous, and rebalancing can be executed by dispatching available empty vehicles to areas undersupplied. Rebalancing is performed on the graph's vertices, i.e., between city areas. We propose a linear, discrete-time model of an AMoD system using a transformed network. After acquiring the model, the desired number of rebalancing vehicles for the AMoD model is derived through an optimization problem. Moreover, the well-posedness of the model is illustrated. To leverage the proposed model, we implemented the model predictive control (MPC) framework to find the optimal rebalancing and scheduling policy. We show the MPC's effectiveness and how the MPC framework can be implemented in real-time for a real-world case study. The numerical results show that the MPC with a linear cost function and linear reference, which it tracks, is effective, outperforming other MPC-based and state-of-the-art algorithms across all evaluation criteria.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. M. Pavone, S. L. Smith, E. Frazzoli, and D. Rus, “Robotic load balancing for mobility-on-demand systems,” The International Journal of Robotics Research, vol. 31, no. 7, pp. 839–854, 2012.
  2. M. Volkov, J. Aslam, and D. Rus, “Markov-based redistribution policy model for future urban mobility networks,” in 2012 15th International IEEE Conference on Intelligent Transportation Systems, pp. 1906–1911, IEEE, 2012.
  3. F. Acquaviva, D. Di Paola, and A. Rizzo, “A novel formulation for the distributed solution of load balancing problems in mobility on-demand systems,” in 2014 International Conference on Connected Vehicles and Expo (ICCVE), pp. 906–911, IEEE, 2014.
  4. B. Turan, R. Pedarsani, and M. Alizadeh, “Dynamic pricing and fleet management for electric autonomous mobility on demand systems,” Transportation Research Part C: Emerging Technologies, vol. 121, p. 102829, 2020.
  5. E. Skordilis, Y. Hou, C. Tripp, M. Moniot, P. Graf, and D. Biagioni, “A modular and transferable reinforcement learning framework for the fleet rebalancing problem,” IEEE Transactions on Intelligent Transportation Systems, 2021.
  6. Y. Gao, D. Jiang, and Y. Xu, “Optimize taxi driving strategies based on reinforcement learning,” International Journal of Geographical Information Science, vol. 32, no. 8, pp. 1677–1696, 2018.
  7. G. Guo and Y. Xu, “A deep reinforcement learning approach to ride-sharing vehicle dispatching in autonomous mobility-on-demand systems,” IEEE Intelligent Transportation Systems Magazine, vol. 14, no. 1, 2022.
  8. C. Fluri, C. Ruch, J. Zilly, J. Hakenberg, and E. Frazzoli, “Learning to operate a fleet of cars,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 2292–2298, IEEE, 2019.
  9. A. O. Al-Abbasi, A. Ghosh, and V. Aggarwal, “Deeppool: Distributed model-free algorithm for ride-sharing using deep reinforcement learning,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 12, pp. 4714–4727, 2019.
  10. K. Lin, R. Zhao, Z. Xu, and J. Zhou, “Efficient large-scale fleet management via multi-agent deep reinforcement learning,” in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1774–1783, 2018.
  11. M. Guériau and I. Dusparic, “Samod: Shared autonomous mobility-on-demand using decentralized reinforcement learning,” in 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 1558–1563, IEEE, 2018.
  12. J. Wen, J. Zhao, and P. Jaillet, “Rebalancing shared mobility-on-demand systems: A reinforcement learning approach,” in 2017 IEEE 20th international conference on intelligent transportation systems (ITSC), pp. 220–225, Ieee, 2017.
  13. R. Zhang, Models and Large-scale Coordination Algorithms for Autonomous Mobility-on-demand. Stanford University, 2016.
  14. R. Zhang and M. Pavone, “Control of robotic mobility-on-demand systems: a queueing-theoretical perspective,” The International Journal of Robotics Research, vol. 35, no. 1-3, pp. 186–203, 2016.
  15. F. Rossi, R. Zhang, Y. Hindy, and M. Pavone, “Routing autonomous vehicles in congested transportation networks: Structural properties and coordination algorithms,” Autonomous Robots, vol. 42, no. 7, pp. 1427–1442, 2018.
  16. A. Carron, F. Seccamonte, C. Ruch, E. Frazzoli, and M. N. Zeilinger, “Scalable model predictive control for autonomous mobility-on-demand systems,” IEEE Transactions on Control Systems Technology, 2019.
  17. Z. Lei, X. Qian, and S. V. Ukkusuri, “Efficient proactive vehicle relocation for on-demand mobility service with recurrent neural networks,” Transportation Research Part C: Emerging Technologies, vol. 117, p. 102678, 2020.
  18. J. Warrington and D. Ruchti, “Two-stage stochastic approximation for dynamic rebalancing of shared mobility systems,” Transportation Research Part C: Emerging Technologies, vol. 104, pp. 110–134, 2019.
  19. R. Zhang, F. Rossi, and M. Pavone, “Analysis, control, and evaluation of mobility-on-demand systems: A queueing-theoretical approach,” IEEE Transactions on Control of Network Systems, vol. 6, no. 1, pp. 115–126, 2018.
  20. R. Chen and M. W. Levin, “Dynamic user equilibrium of mobility-on-demand system with linear programming rebalancing strategy,” Transportation Research Record, vol. 2673, no. 1, pp. 447–459, 2019.
  21. J. Zgraggen, M. Tsao, M. Salazar, M. Schiffer, and M. Pavone, “A model predictive control scheme for intermodal autonomous mobility-on-demand,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 1953–1960, IEEE, 2019.
  22. L. Martin, Rebalancing in shared mobility systems. PhD thesis, Technische Universität München, 2020.
  23. R. Iglesias, F. Rossi, K. Wang, D. Hallac, J. Leskovec, and M. Pavone, “Data-driven model predictive control of autonomous mobility-on-demand systems,” in 2018 IEEE international conference on robotics and automation (ICRA), pp. 6019–6025, IEEE, 2018.
  24. F. Dandl, M. Hyland, K. Bogenberger, and H. S. Mahmassani, “Evaluating the impact of spatio-temporal demand forecast aggregation on the operational performance of shared autonomous mobility fleets,” Transportation, vol. 46, no. 6, pp. 1975–1996, 2019.
  25. R. Iglesias, F. Rossi, R. Zhang, and M. Pavone, “A bcmp network approach to modeling and controlling autonomous mobility-on-demand systems,” The International Journal of Robotics Research, vol. 38, no. 2-3, pp. 357–374, 2019.
  26. S. Wollenstein-Betech, I. C. Paschalidis, and C. G. Cassandras, “Joint pricing and rebalancing of autonomous mobility-on-demand systems,” in 2020 59th IEEE Conference on Decision and Control (CDC), pp. 2573–2578, IEEE, 2020.
  27. E. S. Rigas, S. D. Ramchurn, and N. Bassiliades, “Algorithms for electric vehicle scheduling in large-scale mobility-on-demand schemes,” Artificial Intelligence, vol. 262, pp. 248–278, 2018.
  28. M. Drwal, E. Gerding, S. Stein, K. Hayakawa, and H. Kitaoka, “Adaptive pricing mechanisms for on-demand mobility,” 2017.
  29. S. Wollenstein-Betech, M. Salazar, A. Houshmand, M. Pavone, I. C. Paschalidis, and C. G. Cassandras, “Routing and rebalancing intermodal autonomous mobility-on-demand systems in mixed traffic,” IEEE Transactions on Intelligent Transportation Systems, 2021.
  30. D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Constrained model predictive control: Stability and optimality,” Automatica, vol. 36, no. 6, pp. 789–814, 2000.
  31. D. Kang and M. W. Levin, “Maximum-stability dispatch policy for shared autonomous vehicles,” Transportation Research Part B: Methodological, vol. 148, pp. 132–151, 2021.
  32. R. Zhang, F. Rossi, and M. Pavone, “Model predictive control of autonomous mobility-on-demand systems,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1382–1389, IEEE, 2016.
  33. M. Tsao, R. Iglesias, and M. Pavone, “Stochastic model predictive control for autonomous mobility on demand,” in 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 3941–3948, IEEE, 2018.
  34. J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus, “On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment,” Proceedings of the National Academy of Sciences, vol. 114, no. 3, pp. 462–467, 2017.
  35. F. Miao, S. Han, S. Lin, J. A. Stankovic, D. Zhang, S. Munir, H. Huang, T. He, and G. J. Pappas, “Taxi dispatch with real-time sensing data in metropolitan areas: A receding horizon control approach,” IEEE Transactions on Automation Science and Engineering, vol. 13, no. 2, pp. 463–478, 2016.
  36. M. Tsao, D. Milojevic, C. Ruch, M. Salazar, E. Frazzoli, and M. Pavone, “Model predictive control of ride-sharing autonomous mobility-on-demand systems,” in 2019 International Conference on Robotics and Automation (ICRA), pp. 6665–6671, IEEE, 2019.
  37. M. Neely, Stochastic network optimization with application to communication and queueing systems. Springer Nature, 2022.
  38. Y. Wang and S. Boyd, “Fast model predictive control using online optimization,” IEEE Transactions on control systems technology, vol. 18, no. 2, pp. 267–278, 2009.
  39. G. Frison and J. B. Jørgensen, “A fast condensing method for solution of linear-quadratic control problems,” in 52nd IEEE Conference on Decision and Control, pp. 7715–7720, IEEE, 2013.
  40. S. Richter, C. N. Jones, and M. Morari, “Computational complexity certification for real-time mpc with input constraints based on the fast gradient method,” IEEE Transactions on Automatic Control, vol. 57, no. 6, pp. 1391–1403, 2011.
  41. S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on information theory, vol. 28, no. 2, pp. 129–137, 1982.
  42. E. W. Dijkstra et al., “A note on two problems in connexion with graphs,” Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.
  43. A. Aalipour, H. Kebriaei, and M. Ramezani, “Analytical optimal solution of perimeter traffic flow control based on mfd dynamics: A pontryagin’s maximum principle approach,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 9, pp. 3224–3234, 2018.

Summary

We haven't generated a summary for this paper yet.