Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Circulant and Toeplitz matrices in compressed sensing (0902.4394v1)

Published 25 Feb 2009 in cs.IT and math.IT

Abstract: Compressed sensing seeks to recover a sparse vector from a small number of linear and non-adaptive measurements. While most work so far focuses on Gaussian or Bernoulli random measurements we investigate the use of partial random circulant and Toeplitz matrices in connection with recovery by $\ell_1$-minization. In contrast to recent work in this direction we allow the use of an arbitrary subset of rows of a circulant and Toeplitz matrix. Our recovery result predicts that the necessary number of measurements to ensure sparse reconstruction by $\ell_1$-minimization with random partial circulant or Toeplitz matrices scales linearly in the sparsity up to a $\log$-factor in the ambient dimension. This represents a significant improvement over previous recovery results for such matrices. As a main tool for the proofs we use a new version of the non-commutative Khintchine inequality.

Citations (151)

Summary

We haven't generated a summary for this paper yet.