Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Capacity Achieving Codes From Randomness Condensers (0901.1866v2)

Published 13 Jan 2009 in cs.IT and math.IT

Abstract: We establish a general framework for construction of small ensembles of capacity achieving linear codes for a wide range of (not necessarily memoryless) discrete symmetric channels, and in particular, the binary erasure and symmetric channels. The main tool used in our constructions is the notion of randomness extractors and lossless condensers that are regarded as central tools in theoretical computer science. Same as random codes, the resulting ensembles preserve their capacity achieving properties under any change of basis. Using known explicit constructions of condensers, we obtain specific ensembles whose size is as small as polynomial in the block length. By applying our construction to Justesen's concatenation scheme (Justesen, 1972) we obtain explicit capacity achieving codes for BEC (resp., BSC) with almost linear time encoding and almost linear time (resp., quadratic time) decoding and exponentially small error probability.

Citations (3)

Summary

We haven't generated a summary for this paper yet.