Statistical properties of time-reversible triangular maps of the square (0812.1648v1)
Abstract: Time reversal symmetric triangular maps of the unit square are introduced with the property that the time evolution of one of their two variables is determined by a piecewise expanding map of the unit interval. We study their statistical properties and establish the conditions under which their equilibrium measures have a product structure, i.e. factorises in a symmetric form. When these conditions are not verified, the equilibrium measure does not have a product form and therefore provides additional information on the statistical properties of theses maps. This is the case of anti-symmetric cusp maps, which have an intermittent fixed point and yet have uniform invariant measures on the unit interval. We construct the invariant density of the corresponding two-dimensional triangular map and prove that it exhibits a singularity at the intermittent fixed point.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.