A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes (0810.1983v2)
Abstract: We study properties of stabilizer codes that permit a local description on a regular D-dimensional lattice. Specifically, we assume that the stabilizer group of a code (the gauge group for subsystem codes) can be generated by local Pauli operators such that the support of any generator is bounded by a hypercube of constant size. Our first result concerns the optimal scaling of the distance $d$ with the linear size of the lattice $L$. We prove an upper bound $d=O(L{D-1})$ which is tight for D=1,2. This bound applies to both subspace and subsystem stabilizer codes. Secondly, we analyze the suitability of stabilizer codes for building a self-correcting quantum memory. Any stabilizer code with geometrically local generators can be naturally transformed to a local Hamiltonian penalizing states that violate the stabilizer condition. A degenerate ground-state of this Hamiltonian corresponds to the logical subspace of the code. We prove that for D=1,2 the height of the energy barrier separating different logical states is upper bounded by a constant independent of the lattice size L. The same result holds if there are unused logical qubits that are treated as "gauge qubits". It demonstrates that a self-correcting quantum memory cannot be built using stabilizer codes in dimensions D=1,2. This result is in sharp contrast with the existence of a classical self-correcting memory in the form of a two-dimensional ferromagnet. Our results leave open the possibility for a self-correcting quantum memory based on 2D subsystem codes or on 3D subspace or subsystem codes.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.