Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Split decomposition and graph-labelled trees: characterizations and fully-dynamic algorithms for totally decomposable graphs (0810.1823v2)

Published 10 Oct 2008 in cs.DM and cs.DS

Abstract: In this paper, we revisit the split decomposition of graphs and give new combinatorial and algorithmic results for the class of totally decomposable graphs, also known as the distance hereditary graphs, and for two non-trivial subclasses, namely the cographs and the 3-leaf power graphs. Precisely, we give strutural and incremental characterizations, leading to optimal fully-dynamic recognition algorithms for vertex and edge modifications, for each of these classes. These results rely on a new framework to represent the split decomposition, namely the graph-labelled trees, which also captures the modular decomposition of graphs and thereby unify these two decompositions techniques. The point of the paper is to use bijections between these graph classes and trees whose nodes are labelled by cliques and stars. Doing so, we are also able to derive an intersection model for distance hereditary graphs, which answers an open problem.

Citations (38)

Summary

We haven't generated a summary for this paper yet.